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Abstract

Wave propagation in electro-magneto-elastic plate of arbitrary cross-sections is studied using Fourier Expansion Collocation
Method. A mathematical model is developed to study the wave propagation in a electro-magneto-elastic plate of arbitrary cross-
sections using the three- dimensional theory of elasticity. The frequency equations are obtained from the boundary conditions, since
the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the surface of the plate directly. Hence, the
Fourier Expansion Collocation Method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency
equations are obtained by using the secant method, applicable for complex roots. The computed non-dimensional frequencies are

plotted in the form of dispersion curves and its characteristics are analyzed.

Keyword: Vibrations of cylinders, Generalized thermo-elastic cylinder/plate, Mechanical vibrations, Stress-strain analysis, Electro-

magneto-elastic materials, Piezoelectric plate.

l. Introduction

The wave propagation in magneto-electro-elastic materials has gained considerable importance since last decade. The electro-
magneto-elastic materials exhibit a desirable coupling effect between electric and magnetic fields, which are useful in smart
structure applications. These materials have the capacity to convert one form of energy namely, magnetic, electric and mechanical
energy to another form of energy. The composite consisting of piezoelectric and piezomagnetic components have found increasing
application in engineering structures, particularly in smart/intelligent structure system. The magneto-electro-elastic materials are
used as magnetic field probes, electric packing, acoustic, hydrophones, medical, ultrasonic image processing, sensors and actuators

with the responsibility of magnetic-electro-mechanical energy conversion.
A method, for solving wave propagation in arbitrary and polygonal cross-sectional plates and to find out the phase velocities in

different modes of vibrations namely longitudinal, torsional and flexural, by constructing frequency equations was devised by
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Nagaya [1-3]. He formulated the Fourier expansion collocation method for this purpose and the same method is used in this
problem.The three-dimensional behavior of magnetoelectroelastic laminates under simple support has been studied by Pan [4] and
Pan and Heyliger [5]. An exact solution for magnetoelectroelastic laminates in cylindrical bending has also been obtained by Pan
and Heyliger [6]. Pan and Han [7] studied the exact solution for functionally graded and layered magneto-electro-elastic plates.
Feng and Pan [8] discussed the dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-
elastic plates. Buchanan [9] developed the free vibration of an infinite magneto-electro-elastic cylinder. Dai and Wang [10,11] have
studied thermo-electro-elastic transient responses in piezoelectric hollow structures and hollow cylinder subjected to complex
loadings. Later Kong et al [12] presented the thermo-magneto-dynamic stresses and perturbation of magnetic field vector in a non-
homogeneous hollow cylinder. Annigeri et al [13-15], studied respectively, the free vibration of clamped-clamped magneto-electro-
elastic cylindrical shells, free vibration behavior of multiphase and layered magneto-electro-elastic beam, free vibrations of simply
supported layered and multiphase magneto-electro-elastic cylindrical shells. Hon et al [16] analyzed a point heat source on the
surface of a semi-infinite transversely isotropic electro-magneto-thermo-elastic materials. Sharma and Mohinder Pal [17] developed
the Rayleigh-Lamb waves in magneto-thermo-elastic homogeneous isotropic plate. Later Sharma and Thakur [18] studied the effect
of rotation on Rayleigh-Lamb waves in magneto-thermo-elastic media. Gao and Noda [19] presented the thermal-induced interfacial
cracking of magnetoelectroelastic materials. Bin et al [20] studied the wave propagation in non-homogeneous magneto-electro-
elastic plates. Ponnusamy [21-23] have studied the wave propagation in generalized thermo-elastic cylinder of arbitrary cross
section, thermoelastic and generalized thermo elastic plates of arbitrary and polygonal cross-sections respectively. Ponnusamy and
Rajagopal [24,25] have studied, the wave propagation in a generalized thermo elastic solid cylinder of arbitrary cross-section and in
a homogeneous transversely isotropic thermo elastic solid cylinder of polygonal cross-sections respectively using the Fourier

expansion collocation method.

2. Formulation of the Problem

We consider a homogeneous transversely isotropic magneto-electro-elastic plate of arbitrary cross-sections. The system
displacements and stresses are defined by the cylindrical co-ordinates r, @ and z. The governing equations of motion, electric and
magnetic conduction equation in the absence of body force are
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-1 -1 _
O-rﬂ,r +r 0-499,49 +O-Qz,z +2r O-rﬁ - pv,tt

O+ I"lagu9 +0,,+ r’larz = PWy

The electric conduction equation is
D,,+r'D,+r'D,,+D,, =0.

The Magnetic conduction equation is

B, +r'B +r'B,,+B,,=0.

Where

Oy =Cpy€ +Cp8y +Ci38, —€3E, — Oy H,
Ogp =Co€y +Cy 1€y +Ci38, —€5E, — Oy H,

0, = Ci3€, +Ci3€hp +Cis€,, —€3E, —Q35H,

Oy = 2C4€,y
Oy, =2C,,8,, —€5E, —0;sH,
o, =2¢,e, —€sE, —0q;H,

Dr = Ze1serz + 811Er + mllH r
D, =2ee,, +&,E,+m,H,
D, =ey (err + eee) +€548, +E5E, +MyH,
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Br = 2qlserz + mllEr + lullH r
B, = 2q,:¢,, + M, E, +14,H,

B, =0, (err +€p ) +05€, +MyE, +155H, (6)

Where o,,,0,,0,,,0,,,0,,are the stress components, C,,,C,,,C,3,Cs3,Cyyand Cg =(C11 -Cp, )/ 2are elastic constants, &;, &
are the dielectric constants, 44,, l;;are the magnetic permeability coefficients, €;,,€,,,€,c are the piezoelectric material

coefficients, 0, 0,3, 05 are the piezomagnetic material coefficients, m,,, M., are the magneto-electric material coefficients, pis

the mass density of the material, D,,D,and D, are the electric displacements, B,,B, and B, are the magnetic displacements

components.

The strain e;; are related to the displacements corresponding to the cylindrical coordinates (r, o, Z) are given by

— -1 —
err - u,r ! eg@ =r (V,H +U) 'ezz - Vv,z

\Z

eHz = %(V,Z + rilvvﬂ) ! ere = %(rluﬂ +V,r - r’lv)’ €. = %(U + Wr) (7)

where u, v and w are the mechanical displacements along the radial, circumferential and axial directions respectively.

The Electric field vector Ei , (i =r,é, Z) is related to the electric potential E as

Erz—ﬁ, Egz—EE and EZ=—ﬁ (8)
or r oo ’ 0z

Similarly, the magnetic field vector H,, (i =r,0, Z) is related to the magnetic potential H as

Hr:_ﬁ, ng—lﬁ and Hz=—ﬁ ©)
or r 0o 0z

Substituting the Egs. (4)-(9) in the Egs. (1)-(3), we obtain the set of displacement equations as follows;
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-1 -2 -2 -1, -2
cn(u’r,+r u,—r u)+066r U gp +Caqll , +(C5 +Cip ) TV 1y = (Coy +Ce6 ) TV,

(10a)

+(C44 + Cls)W,rz + (e31 +e15) E,rz + (qsl + q15) H,rz = pUy
(C66 + C12 ) r_lu,re + (Cll + C66 ) r_zu,e + CGG (V,rr + r_lv,r - r—ZV) + C44\/,12 + Cllr_zv,ea (10b)
+(C44 +Cy3 ) erﬂZ + (e31 +€5 ) rilE,az + (q31 + 05 ) rilH,az =pPVy

(C44 +C13)(u,rz + rilu,z + rilv,az ) +Cyy (W,rr + erV,r +W,99)+ CoaW,, +€53E ,

+q33H,zz +el5(E,rr + r_lE,r + r—2 E,06)+ q15(H,rr + r_lH,r + r_ZHﬂe) = pW,tt (100)
€5 (W,rr + rilw,r + rizw,ae)"' (esl +€5 )(u,rz + rilu,z + rilV,az ) +euW,, —&xE, (100
~MyH ,, =&, (E +TE, +1°E ) —my (H,, +rH, +r?H ,)=0
Chs (W,rr + r’lwr + r’2w99)+ (q31 + qls)(u,rz + rilu,z + rilv,az)"' OssW,, —MyE (106)

e

_ﬂ33H,zz —my ( E,rr + rilE,r + rizEﬂﬁ)_lull ( H,rr + rilH,r + rizH,HB) =0

3. Solution of the Problem

The Eq. (10) is a coupled partial differential equation with three displacements and magnetic and electric conduction components.

To uncouple the Eq. (10), we follow Sharma and Sharma [26] and seek the solutions in the following form

I [ S R (7Y N
V=X (o v )+ (00w )]
W=>z,[W,, +Wn, |

E=Y¢,[E,, +En]

H=3&[H,,+Hn:| (12)
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where &, =1/2 for n=0, &, =1 for n>1,4,(r,0), v, (r,0), W, (r,0). E,(r,0). H,(r,0) are the displacement

potentials for the symmetric mode and ;Zn(r,é’), y_/n(r,é’), V_Vn(r,t9), En(r,e) andﬁn(r,e) are the displacement

potentials for the anti symmetric mode of vibrations.

Substituting the Eq.(11) in (10), we get

ot & oW, oE oH
[C“Vf T _patzj¢” () (B H s )t (G + s ) =0

o & oW, oE oH
(C“Vf-’_c““ 072 _patz)% _(Cls+C44)a_zn_(esl+el5)6_zn_(q31+q15) 82n =0

) o? o? o, ) o?
C44V1 +C33?—p? Wn_(C13+C44)EV1¢n+ e15V1+e33§ En

82
+(q15v12 + Qg3 ?j H,=0

2

0° 0 0 0?
(615vlz €5 ?jwn _(631 + 915)5V12¢n _(gllvlz + &5 ?] E, _{mnvlz + My, ?] H,=

2 2

0 0 0?
(q15vlz + 053 _J\Nn _(qu + 05 )V12¢n _[mllvlz + My, ?j E, _(ﬂnvf + Uy j H,=0

oz° o’
and
(C%Vf +Cyy 8%22 —pst—ijl//n =0 (13)
where
V2= > 10 1 ¢

or? ror r?o6?
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The Eq. (13) gives purely transverse wave, which is not affected by the electric and magnetic field. This wave is polarized in the
planes perpendicular to the z-axis and it may be referred as the simple harmonic wave. We assume that the disturbance is time

harmonic through the factor e'* R is angular velocity and hence, the system of Eqgs. (12a)-(12e) becomes

0? oW, oE, oH,

(Cnviz +Cyy ?+pa)2j¢n _(013 +C44)E_(e31 +915)E_(q31 +q15)§ =0 (14a)
0? oW, oE, oH,

(quf +Cyy ?"'szj% _(C13 +C44)E_(e31 +e15)5_(q31 +q15)§ =0 (14b)

& 0 i
((344V12 +Cy 2 + po’ ]Wn — (€3 +Cyy )Evlz¢n + (elsvlz = ?j E,
(14c)
S (PR
+| OsVi + 05— =
(qIS 1 q33 aZZJ n

2 2

0° 0 0 0
[eﬁvlz + €53 ?jwn _(631 + els)avf% _[511V12 &5 ?j E, _(mnvlz + My, ?j H,=0 (14d)

0* 0 o? 0?
(qlsvlz 0 ?]Wn _(q31 +05s )Evlz¢n _(mllvlz + Mg, Ej E, _(ﬂuvf ) o2 H,=0 (l4e)
We consider the free vibration of arbitrary cross-sectional plate, so we assume that
¢,(r.0,2,t)=¢,(r)cos(mzz/L)cosnd

W, (r,6,2,t)=W, (r)sin(mzz/L)cosnd

E,(r.0,z2,t) :[CﬂJ E, (r)sin(mzz/L)cosnd

Oss

Hn(r,e,z,t)=(cﬂJHn(r)sin(m;zz/L)cosnﬁ (15)

Oss
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and
v, (r.0,2,t) =y, (r)cos(mzz/L)sinng (16)

Introducing the dimensionless quantities such as

r - ¢ - e - 0 w’a® — M.cC
x=—,t =¢a, {=mz/L cj=—, &j =—, ¢, =—, o=~ L my =—2
a 44 33 q33 C44 q33e33
= _ HiCyu = ECu : :
= i L is the length of the plate and using the Eqgs. (15) and (16) in the Egs. (14) and (13), we get
33 33

(EnVi ~t’ +Q2>¢n —<1+(_213)t|_Wn —((_331 +(_915)tLEn —(631 +als)t,_Hn =0
(V3+Q° —Cast? W, +(1+Cua )t, V3, + 15V —t7 ) E, +(0,sV3 —t7 | H, =0

(615V§ ~t? )Wn + ((_931 + (_Bls)t,_vggén + (Es3ti —Envg ) E, + (Esstf - ﬁnvi) H, =0

(qlsvg _tf )Wn + (q31 +0;5 )tLV§¢n + (m33t5 - mllv;) E,+ (/J33tf - /unv;) H,=0 (17)
and
(Ewg —t7+0Q° )l//n =0 (18)
2 2
Where V3 =a—2+lg—n—2.
X° XOX X

The Eq. (17) is a homogeneous linear equation which has a trivial solution to obtain the non-trivial solution, the determinant of the

coefficient matrix is equal to zero. Thus we get
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(Ellvg + gl) =0, —0st -0t
gthvg (V; + gs) ((_?15V§ _tf) (C_lls—,V; _ti)
gatng (él5vg _ti) <g6 _Ellvg) (97 _ﬁllvg)

g4tLv§ (au—,Vg _t5> (97 —anV;) (gs _;lllvg)

0 (19)

(¢n’Wn1En’Hn)

where

QIZQZ—tE, g, =1+Cis, 932(6314-615), g, :(aa1+a15)v 0s 2(92—6331:5),

32 42 Y
Os =&nll, O, =Mssl], Qg = figlf
Evaluating the determinant given in Eq. (19), we obtain the partial differential equation of the form

(AV)+BV;+CV;+DV;+E)(4,W,,E,, H,)=0 (20)

where

o= = =27 — - — — -
A=cu {811 |:/‘11 + qls} + [y, €15 — M |:m11 + 21505 :I}
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_ _ _ _ _ 7 - - -
B = Cu{~0¢ 1y — Gg €11 + 29, M1 + gy |:511,u11 - mll} —€1s5 [98915 + th (,uu — My )j|

— -2 —

+ als |:_geals + ZtE (au - 2‘11 )] + 297 (_315(_]15 }+ 0 {211 |:;11 + afs } + 4,615 —Mu [an + 21_315 als :|}

+g,t2 {gz [;11/_111 —ﬁfl}—éls [—93/_1“ + gﬁn}aﬁ [—gﬁn + 94211]}
— at? {0 [ s+ MiaClg |+ Gty + G Mis + s 025 — 0,855 |
+g,t? {92 [—ﬁuéls +511515J+ sMi — g, £11 + €15 [93615 - 94515]}
C = Cu{0ss — 0% + s | s 11y — Gp &2 + 20, My |+ 27 [ 15 (=G5 + 9, )+ Uys (<0, + 05 ) |
!y = 2+ 20 1+ Ot — Gy + 20, s + G| 2y — s |
—ess [98515 +2t7 (;11 — ﬁuﬂ +0,s [—96(_115 +2t? (ﬁn —én )J +20,€150,.}
+ 45 [ ~06 141 — Up 11 + 20, Mus |~ €[ 0505 — 949, ]+ s [ 0597 — 90 ]
[ =G s+ QM + GaMus = 0, 211 [1— QL7495 | Gais =, Gys +87 (422 =Mt ) [~ 90,
+ 0407 = Os [ G 1y + 9 M |+ Quet? [0 + 0]t 95 0s — s 3
+ 020, | 97815 — Gy Ohs +17 (M = 211) |~ 93, + 0,05 — G [ ~Ga M+, |
+esst? [~05 + 0, ] 17 040 — G5 [}
D = Cus {05 [ 0605 — 07 |+t [~05 +20, — 0 ]} + 0.t740.7 [0, + 0 ]
05 [0 — 9496 ]t/ [~0s + 9 B+ 9496 s — 07 + s | ~0s 14 — Gy s + 29, M |
+2t] [—515 (~9s +0; )+ Gy (—9; + G )] +t] [;11 —2mu + En]}
+ 0,120, [ 0696 — 07 | +t2[0:0: — 9497 — 9, + 0.6 ]}
— 0t {0,t7 [~ 5 + 95 ]- 95 [ 0505 — 9,0, | -t [~ 05+ 0, ]}

E=0,{0s[ 0:95 — 07 | +t'[~05 + 20, — 0, ]}

Solving the Eq. (20), the solution for the symmetric mode obtained as

# = 24: A,J, (er)cosno

4
W, => aA,J,(ar)cosng

i=1

4
E, =Y bA,J,(r)cosnd
i=1
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I
.M“

G AL, (e4r)cosng (21a)

i=1

The solutions to the anti symmetric modes of vibrations 5,1 W, En, Hn are obtained by changing cosn@ by sinné in the Eq.

(21a), we get

4
z (e;r)sinng
i=1

.4
Wi => a And, (er)sinng

i=1

En —Zb And. (a;r)sinng

>(-

Mb

a r sinng . (21b)

where J o is the Bessel function of first kind of order n . The constantsa,, b, and C, defined in the Eq. (21) is calculated using the

following equations

~g;t 8 gt b — gt ¢ =Cua —g,
(—a? +9s)a - (elsa +1 )b (qlsa +1 )ci =gt o’
—(élsaiz +tf)ai +(96 +E‘11(Zi2>bi +(g7 +ﬁnaf)ci = g3t|_0(i2

- (515042 +17 ) g + (97 + a110‘i2 ) b+ ( Og + /‘_111042 )Ci =gt (22)

Solving the Eq. (22), we obtain
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~=0:(9, +mua’ )+ g, (g, +euar)

- -0, (96 +E‘110{i2)— 0, (élsaiz —HE)

B 0s0,tia; +(Ellai2 - gl)(g7 + ﬁlla‘iz)

b= t, [gz (96 + Enaiz)+ 0, (élsaiz +tf )J

. ((_3110£i2 - gl)(élsaf —HE)— gzg3tfai2

"t ] 096+ 2uaf )+ g (e 47 ) |

Solving the Eq. (13), we obtain the solution for symmetric mode as
w, =AJ, (ar)sinng (23a)

and the solution for anti symmetric mode is 1/7,1 obtained by changing Sinn@ by cosn@ in the Eq. (23a), we get

v, =Asd, (ar)cosnd (23b)

Where J, is the Bessel functions of first kind of ordern, and & = (tf -7 )/066 : If(ozia)2 <0(i=1,2,3,4,5), then the

Bessel function J . is replaced by the modified Bessel function I .

4. Boundary conditions and frequency Equations

In this problem, the vibration of arbitrary cross-sectional plate is considered. Since the boundary is irregular in shape, it is difficult to

satisfy the boundary conditions along the surface of the plate directly. Hence, the Fourier expansion collocation method is applied to

satisfy the boundary conditions. For the plate, the normal stress o, and shearing stresses o, , 0, , the electric field D, and the

magnetic field B, is equal to zero for stress free boundary. Thus the following types of boundary conditions are assumed for the

plate of arbitrary cross-section is

IJSER © 2012
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(O-XX)i :(ny)i :(GXZ)i :(DX)i :(BX)i =0 (24)

where ( )i is the value at the i—th segment of the boundary, if the angle y; between the normal to the segment and the

reference axis is assumed to be constant, then the transformed expression for the stresses are given by

0, =(C, C08* (0= 7,) + ¢ 5in* (0—7;) )u, +17(cy5in* (8- y,) +cy, c08° (60— ) )(u+v, )
+Cyq (r‘l (v—uﬂ)—v,r)sin 2(60-7,)+c W, +e,E, +q,H,=0

Oy :c%((u’r —r‘l(vﬂ +u))sin 2(0—yi)+(r‘1(u’9—v)+vvr)0032(¢9—yi))=0

o, =Cy ((u'Z +W, )cos(6-7y) (v, + r‘J\/\/’g)sin(@—;/i))JrelsEvr +QH, =0
D, =e;s (u,z +Wr)_‘911E,r -myH, =0

Bx =0 (U,z +Wr)_rnllE,r _/'L.LlH,r =0 (25)

Substituting the Eqgs. (21) and (23) in the Eq. (24) and performing the Fourier series expansion to Eq.(24) along the boundary as
discussed in Ponnusamy [21-23], the boundary condition along the boundary of the surfaces are expanded in the form of double
Fourier series. When the plate is symmetric about more than one axis, the boundary conditions in the case of symmetric mode can be

written in the form of a matrix as given below:

7Eéo Egn Egn Egn 0 Eéi EéN E;l EozN Eg1 EgN Er)41 EUAN E051 EgNiiAlﬂi

Evo Ebo Ebo Ew 0 By o Ew EG  Ew By o Ew Ey o Ew By o Ei | Ao
Folu F020 Fosu Fog 0 Foll o F01N Fozl o F02N F031 o FOSN FoAi o FDAN Fo51 o FOSN Ag
: : : . : : : : : : : : ol A
FNlu FNZU FNSU FNAU 0 Fril Frxlw FNZI FNZN FN31 Fer bel FI\?N Fr\?1 FI\?N AA
Golo Gozo Gogo Ggo 0 Gél o GéN Gozl o GOZN 6031 o GnaN Ggl o G;N GOSI o G(?N
: : : : : : : : : H : : : : : A, |=0

Gao Griu Griu G:m 0 Giﬂ G:w Gri1 GAZIN Gfu GViN Grfn G:IN G;1 G;N Azl

1 2 3 4 1 1 2 2 3 3 4 4 5 5 :
Huo Huo Huo Hoo 0 HUl HON Hm HON HDI HUN Ho1 HON Hm HUN .
: : : [ : : : : : : : : ol Ay
1 2 3 4 1 1 2 2 3 3 4 4 5 5 H
HNO HNO HNO HNO 0 HNl HNN HNl HNN HN1 HNN HNl HNN HNl HNN .
1 2 3 4 1 1 2 2 3 3 4 4 5 5
Iou Ioo Ioo Iou 0 IDl IUN |01 ION |01 IDN |u1 ION |01 ION ASl
1 2 3 4 1 1 2 2 3 3 4 4 5 5
_INU IND IND IND 0 INl INN INl INN |N1 INN INl lNN INl INN__&N_ (26)

where
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2 14 2 [
i n J & J i
El = > | el(R,0)cosmodg, F) = Z fJ(R,0)sinmodo
=g, =g,
) 2 14 2¢ 14
Gh = == [ 94 (R.0)cosmadd, HJy =| == |3 [ h!(R,,6)cosmédo,
— T i=1
= O =la,
14
i —
| = J' i/ (R,0)cosmado @7)
i=1 64
The coefficients€, LI I, are given in the Appendix A.
Similarly, the matrix for the anti synmetric mode is obtained as
[Eb Eu - Ew En - Ew En - Ew En o Em En - En | Aw
: : : : : : : : : : : Au
—5 —1 —1 —2 —2 —3 —3 —4 —a —5 —5 :
Eno Ent -+ Ew  En -+ Ewv Ent -+ Emv Em o+ Emv Ena - Ewv
—s —1 —1 —2 —2 —3 —3 —4 —a —s —s A
Fo Fu -+ Fwn Fu -+ Fwn Fu -+ Fwn Fu -+ Fiwn Fu -+ Fuw |7
: : : : : : : : : : H An
E?\IO FNl FNN FNl FNN Ef\ll Ei‘N FNl FNN E?\ll E?\N\l 7-
—=5 —1 =1 =2 =2 =3 =3 —4 —4 —=5 =5 Aoy
Gw Gu -+ Gw Gu -+ Gw Gu -+ Gw Gu -+ Gw Gu -+ Gw || =
. Asr
: T |=0
—s =1 —1 —2 —2 =3 =3 = —4 = —s5 :
GND GNl GNN GNI GNN GNl GNN GNl GNN GNl GNN KS
—s  — —1 —2 —2  —3 —s —4 —4 —s —s N
Hwo Hn Hivn  Hu Hin  Hu Hin  Hu Hiv  Hu Hin Au
—s5 —1 —1 —2 —2 ;3 —3 —4 —4 —s —s _
HNO HNl A HNN HNl HNN HNl A HNN HNl A HNN HNl A HNN A4N
—5 —1 —1 —2 —2 —3 —3 —a —a —5 —5 —
IlU Ill A IlN Ill IlN |11 A IlN Ill A IlN Ill IlN ASl
-5 -1 —1 —2 —2 7; —3 —4 —4 —s5 -5 -
[ Ino I o I Ine oo T I - I v o T T oo T [[Asn |

where

. I . . 4.
Er = 223 [ 6r(R,6)sinmeds, Fam=[ 22 |3 [ T1(R,6)cosmado
VA i ‘

. 6 . 6
Gm =| =5 ZI:I g, (R,0)sinmade, Hm =| =2 ZI: I ha (R,,6)sinmade
T i ‘

I
=
x

N
S
x
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G

. | .
|r‘m=(2ﬂz in(R,60)sinmado (29)

T

=14,

where j=1,2,3,4 and 5, | is the number of segments, R, is the coordinate r at the boundary and N is the number of truncation of the
Fourier series. The frequency equations are obtained by truncating the series to N+1 terms, and equating the determinant of the

coefficients of the amplitude A, =0 and Z\m =0 (i=1,2,3,4 and 5), for symmetric and anti symmetric modes of vibrations.

5. Solid circular Plate

The frequency equation for solid circular plate can be written in the form
|A=0 (30)
where A isthe 5x5 matrix with elements &; (i, 1=12,3/4, 5) are given by

. =[~2ces {n(n=1)J, (e,ax) +(eax) I, (eax)}+ x*[cu (@) +1, (Cuea, +eab, +0,,C, )J, (erax)],i =1,2,3,4
&

8y = 2nCes {N(N—1)J, (sax) —(5ax) ., (sax)}
3, ={2n(n-1)+J, (aax)+(aax)Jd,, (eax)},i=12,3,4
8, = Ces [{—Zn(n ~1)+ 3, (2%) + (@8%) 3, (%)} + (@)’ 3, (aiax)]

8y, = [ (tL+a)+esb, +05C, |{nd, (@ax)—(eax)J,., (ax)},i=1234

ay; = —nt,J, (azax)
8, =[ & (t, +a)—zub —mug, |{nd, (eax)—(egax)J,,, (eax)},i=12,3,4
8,5 = —ewsnt, J, (a5ax)

& =[Ehs (tL +8 )_n_'lllbu _;luci:|{n‘]n (aiax)_(aiax)‘]ml (a’iaX)},i =1234.
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6. Numerical results and Discussions

The electro-magnetic material constants based on graphical results of Aboudi, 2001[27] used for the numerical calculations is given

in the Table 1.

Table. 1 The material properties of the electro-magnetic material based on graphical

results of Aboudi [27] composites

Ci C, Cs Css Cus Ces
218 120 120 215 50 49
€55 €31 €33 Gis 031 O3
-25 7.5 200 265 345
2% €33 My Hsz my, my,
0.4 5.8 -200 95 0.0074 2.82

¢; (10°N/m*),&;(10°C/Vm),e; (C/m?)

Units:
d; (N/Am), zz; (10°Ns? /C?), m; (10°Ns/VC)

In the numerical calculation, the angle O is taken as an independent variable and the coordinate Ri atthe 1—th segment of the

boundary is expressed in terms of 0. Substituting Ri and the angle 7, between the reference axis and the normal to the i —th

T T — i i
boundary line, the integrations of the Fourier coefficients e;, fn', gr'], hr'” |rl],en, f. g'n , hn and 1n can be expressed in

terms of the angle 0. Using these coefficients in to the Eqgs. (27) and (29), the frequencies are obtained for electro-magneto-elastic
plate of arbitrary cross-sections. In the present problem, there are two kinds of basic independent modes of wave propagation have

been considered, namely, the longitudinal and flexural anti symmetric modes of vibrations.

6.1 Elliptic cross-section

The elliptic cross section of a plate is shown in Figure 1 and its geometric relations used for numerical calculations given
below are due to Nagaya [2] as,
; ]/2 _ * *
Ri/b = (a/b)/(cos2 6’+(a/b)2 sin® 6?) ¥, = 7z/2—tan 1((b/a)z/tan 0 ) for@ < 7z/2
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7, =nm)2,for 0 =7/2 ¥, :ﬂ/2+tan‘1((b/a)2/‘tan 6?:‘) for 8 > /2. (31)

where a is the semimajor axis and b is the semiminor axis of the elliptic plate and 6 = (6 +6’i_1)/2, R; is the coordinate r at the

boundary, y; is the angle between the normal to the segment and the reference axis at the i —th boundary.

I —

Z=0

Figure 1 Elliptic cross-sectional plate

6.2 Parabolic cross-section

The geometry of the parabolic cross section is given in Figure 2. The geometric relations of the parabolic cross section given by Nagaya [1] are as

follows:
2 2 ) Y2 -2
R /c=(e/c) {—cos¢9+[cos 0+2(c/e) sin 0] }/Zsm 0
T -1 2 C 1

=——tan"| (e/c) ————

7177 (¢/c) R (¢) 2sin
S=r—tan™ (29/ C) for the parabolic curve, and (32a)
R./c=-1/2c0S8, ¥, = 7 for the straight line boundary (32b)

where 49: = (0' + 6}71 ) / 2, Ri is the coordinate I at the boundary and ¥, is the angle between the normal to the segment and the reference axis at

i —th boundary. The parameters € and C used in Eq. (32) are defined in Figure 2.
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Figure 2 Parabolic cross-section

6.3 Longitudinal mode

The geometrical relations for the elliptic cross-sections given in Eq. (31) are used directly for the numerical calculations,
and three kinds of basic independent modes of wave propagation are studied. In case of the longitudinal mode of elliptical cross-
section, the cross-section vibrates along the axis of the plate, so that the vibration and displacements in the cross-section is

symmetrical about both major and minor axes. Hence, the frequency equation is obtained by choosing both terms of N and m as
0,2,4,6,... in Eq. (26) for the numerical calculations. During the longitudinal motion of parabolic and cardioidal cross-sections,
the vibration and displacements are symmetrical about the major axis and hence the frequency equation is obtained from Eq. (26)

by takingn,m=0,1,2,3....

Since the boundary of the cross-sections namely, elliptic, cardioid and parabolic are irregular in shape, it is difficult to

satisfy the boundary conditions along the curved surface, and hence Fourier expansion collocation method is applied. In this

method, the curved surface, in the range @ =0 and @ = is divided into 20 segments, such that the distance between any two

segments is negligible and the integrations is performed for each segment numerically by using the Gauss five point formula .The
non-dimensional frequencies are computed for 0 <2 <1.0, using the bi-section method (applicable for the complex roots Antia
[28])

6. 4 Flexural mode

In the case of flexural mode of elliptical cross-section, the vibration and displacements are anti symmetrical about the major
axis and symmetrical about the minor axis. Hence, the frequency equations are obtained from Eq. (28) by choosing
n,m=123,5,.... Since the vibration and displacements are anti symmetrical about the major axis for the parabolic and cardioidal

cross-sectional plates, the frequency equation is obtained by taking n,m=1,2,3... in Eq. (28).
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The geometric relations for the elliptic and parabolic cross-sections are given respectively in the Egs. (31), (32) and for the
cardioids cross-sectional plate, the geometric relations are considered from the Eqgs. (24) and (26) of the reference Nagaya [3] are

used for the numerical calculations. The notations namely, S;,S,,S,... and A, A,, A,... used in the graphs and Table

respectively represents the symmetric and anti symmetric modes vibration, and the subscripts 1, 2, 3 etc.. represents the first,

second, third, fourth and fifth modes vibrations.

The frequency equation for the solid circular plate is obtained by exact method is given in Eq. (30), from the equation., the
frequencies are obtained by exact method are used to compare the results of the present method. The dimensionless frequencies are
computed for 0 < <1.0 for different aspect ratios a/b=1.0, 1.5 and 2.0 for longitudinal and flexural anti symmetric modes of
vibrations using bi-section method. The frequencies obtained for the longitudinal and flexural anti symmetric modes of vibration
by the exact method is matches well with the frequencies obtained for the aspect ratio a/b=1.0 for a elliptic cross-sectional plate is
given in the Table 2.The non-dimensional frequency of elliptic cross section for the aspect ratio a/b=1.0 will represent a circular
plate. Since the frequency for the elliptic cross section for the aspect ratio a/b=1.0 matches with the frequency obtained by the

exact method is shown in the Table 2. So the problem is extended for elliptic, cardioids and parabolic cross sectional plates.

A graph is drawn between the geometric ratio L/a=0.5 with the aspect ratio a/b=1.5 versus non-dimensional frequency |Q| for a

longitudinal mode of electro-magneto-elastic plate of elliptic cross-sectional plate is shown in Fig.3. From the Fig.3, it is observed
that the non-dimensional frequency increases for different modes of vibrations. The similar behavior is observed for a flexural anti

symmetric modes of elliptic cross-sectional electro-magneto-elastic plate is shown in Fig.4. A dispersion curve is drawn between the
geometrical ratio L/a=0.5 with the aspect ratio a/b= 0.5, 1.0, 1.5 and 2.0 versus the non-dimensional frequency |Q| for a

longitudinal modes of electro-magneto-elastic plate of elliptic cross-sectional plate is shown in Fig.5. From the Fig. 5, it is observed
that the non-dimensional frequencies are decreases by increasing the aspect ratios, this is the proper physical behavior of plate with

respect to its aspect ratios.

The Figs.6 and 7 respectively represents the relation between the geometric ratio L/a=0.5 with geometric parameter s= 0.0, 0.5

and the non-dimensional frequency |Q| for a longitudinal and flexural antisymmetric modes of a cardioid cross-sectional plate.

From the Figs.6 and 7 it is observed that the non-dimensional frequency |Q| increases linearly with respect to the Geometric ratio

L/a in both longitudinal and flexural antisymmetric modes of vibrations. The cross-over points shown in the longitudinal modes of

cardioidic cross sectional plates represents the transfer of electro-magnetic energy between the modes of vibration.
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A graph is drawn between the geometric ratio L/a=0.5 with e/c=1.5 versus non-dimensional frequency |Q| for a longitudinal

mode of electro-magneto-elastic plate of parabolic cross-sectional plate is shown in Fig.8. From the Fig.8, it is observed that the
non-dimensional frequency increases first and then it starts to decreases for a particular period. The cross-over points between the
waves represents the transfer of electro-magnetic energy between the modes of vibration. The similar behavior is observed for a

flexural antisymmetric modes of parabolic cross-sectional electro-magneto-elastic plate is shown in Fig.9.
7. Conclusions

In this paper, the wave propagation in a electro-magneto-elastic plate of arbitrary cross section are analyzed by satisfying the
boundary conditions on the irregular boundary using the Fourier expansion collocation method and the frequency equations for the
longitudinal and flexural anti symmetric modes of vibrations are obtained. Numerically the frequency equations are analyzed for the
plate of different cross-sections such as elliptic, cardioids and parabolic cross sectional plates. The computed dimensionless
frequencies are plotted in graphs for longitudinal and flexural anti symmetric modes of vibrations. The problem can be analyzed for
any other cross-section by using the proper geometric relation.
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Appendix A

e =[~2ces cos2(6 7, ){n(n-1)J, (aax) +(aax)d, ., (xax)}
+X[(eqa)’ (cucos® (0-)+Csin® (0-7,))
+1, (Elsai +eaiby + 05,6 ), (@ ax)]cos(t, )cosno

—2nCes {n(n-1)J, (e;ax) - (eax)J, , (erax)}sin 2(0 -y, )cos(t, )sinng i =1,2,3,4

(A1)
e =[2Cs C0s2(0 -, )n{(n-1)J, (asax) - (asax) J,., (asax)} cos(t, )cosng
+Eee[2{n(n -1)J, (ag,ax)Jr(aﬁax)JM(a.sax)}—(a5ax)2 J, (asax)]cos(t, )sinngsin2(6—y,) (A2)
fl = [—Z{n(n -1)J, (aiax)+(aiaX)Jn+l(aiax)}-i-((xiax)z J, (aiax)]cos(tL)cos ndsin2(6-y,)
+2n{(n-1)J, (aax)—(eax)J, , (aax)}cos(t, )sinndcos2(6 -y, ),i=1,2,34. A3)
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f? =2n{(n-1)J, (a;ax) - (asax)J,,, (asax)} cos(t, Jcosn@sin2(0-y,)
+ [—Z{n(n ~1)J, (aax) +(asax)J,, (asax)} +(asax)’ J, (asax)} cos(t_)sinn@cos2(6-y,)

(A4)
gl = [(tL +,)0s (67, ) +esb; +0yC J {nd, (aax)—(aax)d,,, (eax)}sin(t, )cosnd
+(t, +a)nd, (ax)sin(t, )sinndsin (60— ),i=1,2,3,4. (A5)
9. =-nt_J, (a;ax)sin(t, )cosndcos(6 -y, )

-{nJ, (a;ax)—(a;ax)J, , (a;ax)}t, sin(t, )sinndsin (0 -,) (A6)
hi = |:é15 (t, +a)—eub, —mug; ]{an (erax)—(aax)J,.., (egax)}sin(t, )cosnd,i=1,2,3,4 A7)
h: = —élsntLJn (asax) (A8)
it =] Qs (t +8)—Mub — 22,6, {3, (@) —(@ax) I,.1 (X)), =1,2,3,4. (A9)
Ir? = _alsntL‘]n (aSaX) (AlO)
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Ciy Ci Cis Ca3 Ca Ces
218 120 120 215 50 49
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€55 €31 €33 Gis 031 O3
0 -2.5 7.5 200 265 345
2% €33 My Ha3 my, m,,
0.4 5.8 -200 95 0.0074 2.82

¢; (10°N/m*), & (10°C/Vm),e; (C/m?)

Units:
d; (N/Am), 4z, (10°Ns? /C?),m; (10°Ns/VC)

Table 2.Comparison between the frequencies |Q| obtained from the exact and present methods of longitudinal
and flexural anti symmetric modes of vibrations

Aspect ratio a/b 1.0 1.5 2.0
Mode Exact Present Present Present
Method Method Method Method
S1 1.4772 1.4772 0.1402 0.1362
Longitudinal S2 1.5573 1.5573 0.6871 0.6769
Mode S3 1.8067 1.8067 1.3589 1.2987
S4 2.2159 2.2159 2.2352 2.1058
S5 2.7243 2.7243 2.7729 2.6179
Al 0.2829 0.2829 0.2812 0.1924
Flexural A2 0.8491 0.8491 0.8434 0.6971
anti symmetric A3 1.5583 1.5583 1.5326 1.4982
Mode Ad 2.4632 2.4632 2.4471 2.4059
A5 2.9709 2.9709 2.8862 2.7166
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Dimensionless frequency|Q|
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Table. 1 The material properties of the electro-magnetic material based on graphical
results of Aboudi[27] composites
Table 2.Comparison between the frequencies Q2] obtained from the exact and present
methods of longitudinal and flexural anti symmetric modes of vibrations

Figure Captions

Fig. 3 Aspect ratio a/b=1.5, L/a=0.5 versus dimensionless frequency|Q| for longitudinal modes of elliptic cross-sectional
plate
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Fig. 4 Aspect ratio a/b=1.5, L/a=0.5 versus dimensionless frequency|Q| of flexural antisymmetric modes of elliptic cross-
sectional plate

Fig. 5 Aspect ratio a/b=0.5, 1.0, 1.5, 2.0, L/a=0.5 versus dimensionless frequency|Q| for longitudinal modes of elliptic
cross-sectional plate

Fig.6 Geometric parameter s =0.0,0.5, L/a=0.5 versus dimensionless frequency|Q| for longitudinal modes of cardioidal
cross-sectional plate

Fig.7 Geometric parameter s =0.0,0.5, L/a=0.5 versus dimensionless frequency|Q| for flexural anti symmetric modes of
cardioidal cross-sectional plate

Fig. 8 Aspect ratio e/c=1.5 with L/a=1.0 versus dimensionless frequency|Q| of longitudinal modes of parabolic cross-
sectional plate

Fig. 9 Aspect ratio e/c=1.5 with L/a=1.0 versus dimensionless frequency|Q]| of flexural antisymmetric modes of parabolic
cross-sectional plate
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